FDTD for Hydrodynamic Electron Fluid Maxwell Equations

نویسندگان

  • Yingxue Zhao
  • Jinjie Liu
چکیده

In this work, we develop a numerical method for solving the three dimensional hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics driven by an external electromagnetic wave excitation. Our numerical approach is based on the Finite-Difference Time-Domain (FDTD) method for solving the Maxwell’s equations and an explicit central finite difference method for solving the hydrodynamic electron fluid equations containing both electron density and current equations. Numerical results show good agreement with the experiment of studying the second-harmonic generation (SHG) from metallic split-ring resonator (SRR).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full-wave semiconductor devices simulation using meshless and finite-difference time-domain approaches

A new numerical method for the full-wave physical modelling of semiconductor devices using a combination of the meshless and finite-difference time-domain (FDTD) approaches is described. The model consists of the electron equations for the active part and Maxwell’s equations for the electromagnetic effects, which describe the complete behaviour of a high-frequency active device. The uncondition...

متن کامل

Energy Balance and Gas Thermalization in a High Power Microwave Discharge in Mixtures

The dynamics of fast gas heating in a high power microwave discharge in air, is investigated in the framework of FDTD simulations of the Maxwell equations coupled with the fluid simulations of the plasma. It is shown that, an ultra-fast gas heating of the order of several 100 Kelvins occurs in less than 100 ns. The main role in the heating is played by the electron impact dissociation of , diss...

متن کامل

Finite-difference time-domain method calculation of light propagation through H-PDLC

Presented is the study of the diffraction properties of transmission holographic polymer dispersed liquid crystal (H-PDLC) grating. We constructed a two-dimensional model of H-PDLC film with cylindrical LC droplets. Director distribution inside LC droplets was calculated using the Monte-Carlo method. To calculate light propagation through the film we have solved numerically the Maxwell equation...

متن کامل

Non-Local Scattering Kernel and the Hydrodynamic Limit

In this paper we study the interaction of a fluid with a wall in the framework of the kinetic theory. We consider the possibility that the fluid molecules can penetrate the wall to be reflected by the inner layers of the wall. This results in a scattering kernel which is a non-local generalization of the classical Maxwell scattering kernel. The proposed scattering kernel satisfies a global mass...

متن کامل

Nonlinear electromagnetic wave equations for superdense magnetized plasmas

By using the quantum hydrodynamic and Maxwell equations, we derive the generalized nonlinear electron magnetohydrodynamic, the generalized nonlinear Hall-MHD HMHD , and the generalized nonlinear dust HMHD equations in a self-gravitating dense magnetoplasma. Our nonlinear equations include the self-gravitating, the electromagnetic, the quantum statistical electron pressure, as well as the quantu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015